Bài 1 (trang 105 SGK Đại Số 10): Xét dấu các tam thức bậc hai:
a) 5x2 - 3x + 1 ; b) -2x2 + 3x + 5
c) x2 + 12x + 36 ; d) (2x - 3)(x + 5)
Bài giải
a) Tam thức f(x) = 5x2 – 3x + 1 có Δ = 9 – 20 = –11 < 0 nên f(x) cùng dấu với hệ số a.
Mà a = 5 > 0
Do đó f(x) > 0 với ∀ x ∈ R.
b) Tam thức f(x) = –2x2 + 3x + 5 có Δ = 9 + 40 = 49 > 0.
Tam thức có hai nghiệm phân biệt x1 = –1; x2 = 5/2, hệ số a = –2 < 0
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–1; 5/2)
f(x) = 0 khi x = –1 ; x = 5/2
f(x) < 0 khi x ∈ (–∞; –1) ∪ (5/2; +∞)
c) Tam thức f(x) = x2 + 12x + 36 có một nghiệm là x = –6, hệ số a = 1 > 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 với ∀ x ≠ –6
f(x) = 0 khi x = –6
d) f(x) = (2x – 3)(x + 5) = 2x2 + 7x – 15
Tam thức f(x) = 2x2 + 7x – 15 có hai nghiệm phân biệt x1 = 3/2; x2 = –5, hệ số a = 2 > 0.
Ta có bảng xét dấu:
Vậy f(x) > 0 khi x ∈ (–∞; –5) ∪ (3/2; +∞)
f(x) = 0 khi x = –5 ; x = 3/2
f(x) < 0 khi x ∈ (–5; 3/2)
Kiến thức áp dụng
Tam thức f(x) = ax2 + bx + c có Δ = b2 – 4ac:
+ Nếu Δ < 0, f(x) cùng dấu với a với ∀ x ∈ R
+ Nếu Δ = 0, f(x) cùng dấu với a với ∀ x ≠ –b/2a.
+ Nếu Δ > 0, f(x) cùng dấu với a nếu x < x1 hoặc x > x2;
f(x) trái dấu với a nếu x1 < x < x2; trong đó x1; x2 là hai nghiệm của f(x) và x1 < x2.