Bài 6 (trang 141 SGK Đại số 11): Chứng minh rằng phương trình:
a. 2x3 – 6x + 1 = 0 có ít nhất hai nghiệm.
b. cos x = x có nghiệm
Bài giải:
a. Đặt f(x) = 2x3 – 6x + 1
TXĐ: D = R
f(x) là hàm đa thức nên liên tục trên R.
Ta có: f(-2) = 2.(-2)3 – 6(-2) + 1 = - 3 < 0
f(0) = 1 > 0
f(1) = 2.13 – 6.1 + 1 = -3 < 0.
⇒ f(-2).f(0) < 0 và f(0).f(1) < 0
⇒ f(x) = 0 có ít nhất một nghiệm thuộc khoảng (-2; 0) và ít nhất một nghiệm thuộc (0 ; 1)
⇒ phương trình f(x) = 0 có ít nhất hai nghiệm.
b. Xét hàm số g(x) = x – cos x liên tục trên R.
do đó liên tục trên đoạn [-π; π] ta có:
g(-π) = -π – cos (-π) = -π + 1 < 0
g(π) = π – cos π = π – (-1) = π + 1 > 0
⇒ g(-π). g(π) < 0
⇒ phương trình x – cos x = 0 có nghiệm trong (-π; π) tức là cos x = x có nghiệm.