Giải bài 3 trang 49 SGK Đại số 10:

Bài 3 (trang 49 SGK Đại số 10): Xác định parabol y = ax2 + bx + 2, biết rằng parabol đó:

a) Đi qua hai điểm M(1; 5) và N(-2; 8);

b) Đi qua hai điểm A(3; -4) và có trục đối xứng là x = -3/2;

c) Có đỉnh là I(2; -2);

d) Đi qua điểm B(-1; 6) và tung độ của đỉnh là -1/4.

Bài giải:

a)

+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)

⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .

+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)

⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).

Từ (1) và (2) suy ra: a = 2; b = 1.

Vậy parabol cần tìm là y = 2x2 + x + 2.

b) + Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2

⇒ –b/2a = –3/2 ⇒ b = 3a (1)

+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)

⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).

Thay b = 3a ở (1) vào biểu thức (2) ta được:

9a + 3.3a = –6 ⇒ 18a = –6 a = –1/3 ⇒ b = –1.

Vậy parabol cần tìm là y = –1/3x2 – x + 2.

c) Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :

Description: Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.

Vậy parabol cần tìm là y = x2 – 4x + 2.

d) + Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)

⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)

+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4

Description: Giải bài 3 trang 49 sgk Đại số 10 | Để học tốt Toán 10

Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.

Phương trình có hai nghiệm b = 12 hoặc b = –3.

Với b = 12 thì a = 16.

Với b = –3 thì a = 1.

Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.