Giải bài 1 trang 18 SGK Giải tích 12

Bài 1 (trang 18 SGK Giải tích 12): Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:

a) y = 2x3 + 3x2 - 36x - 10

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Bài giải:

a) TXĐ: D = R

y' = 6x2 + 6x - 36

y' = 0 ⇔ x = -3 hoặc x = 2

Bảng biến thiên:

Kết luận :

Hàm số đạt cực đại tại x = -3 ; y = 71

Hàm số đạt cực tiểu tại x = 2; yCT = -54.

b) TXĐ: D = R

y'= 4x3 + 4x = 4x(x2 + 1) = 0;

y' = 0 ⇔ x = 0

Bảng biến thiên:

Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3

       hàm số không có điểm cực đại.

c) TXĐ: D = R \ {0}

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

y' = 0 ⇔ x = ±1

Bảng biến thiên:

Vậy hàm số đạt cực đại tại x = -1; y = -2;

       hàm số đạt cực tiểu tại x = 1; yCT = 2.

d) TXĐ: D = R

y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’

= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’

= 3x2(1 – x)2 - 2x3(1 – x)

= x2.(1 – x)(3 – 5x)

y' = 0 ⇔ x = 0; x = 1 hoặc x = 3/5

Bảng biến thiên:

Vậy hàm số đạt cực đại tại x = Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

       hàm số đạt cực tiểu tại xCT = 1.

(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)


 e) Tập xác định: D = R.

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực tiểu tại x = 1/2.